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Abstract
Nuclear supersymmetry is reviewed and some of its applications and extensions
are discussed, together with a proposal for new, more stringent and precise
tests to probe the supersymmetry classification, in particular, correlations
between nuclei that belong to the same supermultiplet. The combination of
these theoretical and experimental studies may play a unifying role in nuclear
phenomena.

PACS numbers: 21.60.−n, 11.30.Pb, 03.65.Fd

1. Introduction

Supersymmetric quantum mechanics (SSQM) arose from the concept of supersymmetry in
quantum field theory applied to the simpler case of quantum mechanics [1]. This framework
has been very fruitful in studying potential problems in quantum mechanics, not only to
understand the connections between analytically solvable problems, but also to discover new
solutions.

In this paper we discuss a somewhat different application of the concept of supersymmetric
quantum mechanics, proposed more than two decades ago in the field of nuclear structure
physics [2] and known as nuclear supersymmetry (n-SUSY). This approach has similarities
to SSQM, but some significant differences too. While both frameworks treat bosonic and
fermionic systems on an equal footing, in the traditional SSQM approach the Hamiltonian H
is factorized in terms of the so-called supercharges (concretely, H is the anticommutator
of the supercharges), whereas in n-SUSY the Hamiltonian is more general and is a
function of the generators of the graded Lie algebra associated with the supergroup which
governs the algebraic structure of the problem. In analogy to the case of SSQM, in
n-SUSY the fermionic generators of the graded Lie algebra play the role of supercharges
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which connect bosonic and fermionic systems. Physically they are associated with one-
nucleon transfer operators connecting states in different neighbouring nuclei. In general,
however, the supercharges do not commute with the Hamiltonian. As a consequence, the
spectra of the systems under study are not identical, as they are in SSQM. In other words,
while in SSQM H is a generator of the superalgebra, this is not the case in n-SUSY, where
a more complicated structure is used. This is a necessary characteristic, because n-SUSY
connects the spectroscopic properties of states in even- and odd-mass nuclei, and we know
these properties are quite different.

In the present paper, we first describe the formalism of nuclear supersymmetry. Next we
report the first results of an ongoing investigation of one- and two-nucleon transfer reactions in
the Pt–Au mass region which is considered to provide the best examples of n-SUSY in nature.
We establish new correlations between transfer reactions among different pairs of nuclei as
a consequence of n-SUSY which can be tested directly in future experiments. Finally, we
discuss future perspectives for nuclear supersymmetry, in particular related to some ideas put
forward several years ago to generalize n-SUSY to other (transitional) regions of the nuclear
mass table [3], and to special correlations between one- and two-nucleon transfer reactions
and β decay.

2. Dynamical supersymmetries in nuclear physics

Dynamical supersymmetries were introduced [2] in nuclear physics in 1980 by Iachello in
the context of the interacting boson model (IBM) [4] and its extensions. The spectroscopy of
atomic nuclei is characterized by the interplay between collective (bosonic) and single-particle
(fermionic) degrees of freedom.

The IBM describes collective excitations in even–even nuclei in terms of a system of
interacting monopole and quadrupole bosons with angular momentum l = 0, 2. The bosons
are associated with the number of correlated valence proton and neutron pairs, and hence the
number of bosons N is half the number of valence nucleons. Since it is convenient to express the
Hamiltonian and other operators of interest in second quantized form, we introduce creation,
s† and d

†
m, and annihilation, s and dm, operators, which altogether can be denoted by b

†
i and

bi with i = l, m (l = 0, 2 and −l � m � l). The operators b
†
i and bi satisfy the commutation

relations [
bi, b

†
j

] = δij

[
b
†
i , b

†
j

] = [bi, bj ] = 0. (1)

The bilinear products

Bij = b
†
i bj (2)

generate the algebra of U(6), the unitary group in six dimensions

[Bij , Bkl] = Bilδjk − Bkj δil . (3)

The IBM Hamiltonian and other operators of interest are expressed in terms of the generators
of U(6). In general, the Hamiltonian has to be diagonalized numerically to obtain the
energy eigenvalues and wavefunctions. There exist, however, special situations in which
the eigenvalues can be obtained in closed, analytic form. These special solutions provide
a framework in which energy spectra and other nuclear properties (such as quadrupole
transitions and moments) can be interpreted in a qualitative way. These situations correspond
to dynamical symmetries of the Hamiltonian [4]. A dynamical symmetry arises when
the Hamiltonian is expressed in terms of Casimir invariants of a chain of subgroups of
G = U(6),G ⊃ G1 ⊃ G2 ⊃ · · · only. The eigenstates can then be classified uniquely
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according to the irreducible representations of G and its subgroups G1,G2, . . . . The different
representations of G,G1,G2 · · · are split but not admixed by the Hamiltonian. The energy
eigenvalues are given by the expectation values of the Casimir operators. In addition, by
using standard group theoretical techniques it is possible to obtain analytic expressions for
electromagnetic transition rates and quadrupole moments, etc.

The concept of dynamical symmetry has been shown to be a very useful tool in different
branches of physics. A well-known example in nuclear physics is the Elliott SU(3) model [5]
to describe the properties of light nuclei in the sd shell. Another example is the SU(3) flavour
symmetry of Gell-Mann and Ne’eman [6] to classify the baryons and mesons into flavour
octets, decouplets and singlets and to describe their masses with the Gell-Mann–Okubo mass
formula.

For odd-mass nuclei the IBM has been extended to include single-particle degrees of
freedom [7]. The interacting boson–fermion model (IBFM) has as its building blocks a set
of N bosons with l = 0, 2 and an odd nucleon (either a proton or a neutron) occupying the
single-particle orbits with angular momenta j = j1, j2, . . . . The components of the fermion
angular momenta span the m-dimensional space of the group U(m) with m = ∑

j (2j + 1).
We introduce, in addition to the boson operators for the collective degrees of freedom, fermion
creation a

†
i and annihilation ai operators for the extra nucleon. The fermion operators satisfy

anti-commutation relations{
ai, a

†
j

} = δij

{
a
†
i , a

†
j

} = {ai, aj } = 0. (4)

The bilinear products

Aij = a
†
i aj (5)

generate the algebra of U(m), the unitary group in m dimensions

[Aij , Akl] = Ailδjk − Akjδil . (6)

By construction the fermion operators commute with the boson operators.

[Bij , Akl] = 0. (7)

The operators Bij and Aij generate the Lie algebra of the symmetry group G =
UB(6)⊗ UF (m) of the IBFM. The dynamical symmetries that can arise in the IBFM are
known under the name of dynamical boson–fermion symmetries for odd-mass nuclei.

Boson–fermion symmetries can further be extended by introducing the concept of
supersymmetries [8], in which states in both even–even and odd–even nuclei are treated
in a single framework. So far, we have discussed the symmetry properties of a mixed system
of boson and fermion degrees of freedom for a fixed number of bosons N and one fermion
M = 1. The operators Bij and Aij can only change bosons into bosons and fermions into
fermions. In addition to Bij and Aij , one can introduce operators that change a boson into a
fermion and vice versa, but conserve the total number of bosons and fermions

Fij = b
†
i aj Gij = a

†
i bj . (8)

The enlarged set of operators Bij , Aij , Fij and Gij forms a closed algebra which consists of
both commutation and anticommutation relations

[Bij , Bkl] = Bilδjk − Bkj δil [Bij , Akl] = 0 [Bij , Fkl] = Filδjk

[Bij ,Gkl] = −Gkjδil [Aij , Akl] = Ailδjk − Akjδil [Aij , Fkl] = −Fkj δil

[Aij ,Gkl] = Gilδjk {Fij , Fkl} = 0 {Fij ,Gkl} = Bilδjk + Akjδil

{Gij ,Gkl} = 0.

(9)
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Figure 1. Magic quartet of nuclei.

This algebra can be identified with that of the graded Lie group G = U(6/m). It provides an
elegant scheme in which the IBM and IBFM can be unified into a single framework [8]

G = U(6/m) ⊃ UB(6) ⊗ UF (m). (10)

In this supersymmetric framework, even–even and odd-mass nuclei form the members of a
supermultiplet which is characterized by [N } where N = N + M , i.e. the total number of
bosons and fermions. Thus, supersymmetry distinguishes itself from other symmetries in that
it includes, in addition to transformations among fermions and bosons, transformations that
change a boson into a fermion and vice versa.

The Hamiltonian of n-SUSY is written in terms of the generators of the graded Lie
algebra of U(6/m) of equation (9). A dynamical supersymmetry arises when the Hamiltonian
is composed of the Casimir operators of a chain of subgroups of U(6/m). Dynamical nuclear
supersymmetries correspond to very special forms of the Hamiltonian which may not be
applicable to all regions of the nuclear chart, but nevertheless several nuclei in the Os–Ir–Pt–
Au region have been found to provide experimental evidence for the approximate occurrence
of supersymmetries in nuclei.

3. Dynamical neutron–proton supersymmetry

The mass region A ∼ 190 has been a rich source of possible empirical evidence for the
existence of (super)symmetries in nuclei. The even–even nucleus 196Pt is the standard example
of the SO(6) dynamical symmetry (DS) of the IBM [9]. The odd-proton nuclei 191,193Ir and
193,195Au were suggested as examples of the Spin(6) DS [2], in which the odd-proton is allowed
to occupy the πd3/2 orbit, whereas the pairs of nuclei 192Os–191Ir, 194Os–193Ir, 192Pt–193Au
and 194Pt–195Au have been analysed as examples of a U(6/4) supersymmetry [8]. The odd-
neutron nucleus 195Pt, together with 194Pt, was studied in terms of a U(6/12) supersymmetry,
in which the odd neutron occupies the νp1/2, νp3/2 and νf5/2 orbits [10]. These ideas were
later extended to the case where neutron and proton bosons are distinguished [11], predicting
in this way a correlation among quartets of nuclei, consisting of an even–even, an odd-proton,
an odd-neutron and an odd–odd nucleus. The best experimental example of such a quartet
with U(6/12)ν ⊗ U(6/4)π supersymmetry is provided by the nuclei 194Pt, 195Au, 195Pt and
196Au which are characterized by Nπ = Nπ + 1 = 2 and N ν = Nν + 1 = 5, see figure 1.

The supersymmetric classification of nuclear levels in the Pt and Au isotopes has been
re-examined by taking advantage of the significant improvements in experimental capabilities
developed in the last decade. High resolution transfer experiments with protons and polarized
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deuterons have led to strong evidence for the existence of supersymmetry (SUSY) in atomic
nuclei. The experiments include high-resolution transfer experiments to 196Au at TU/LMU
München [12, 13], and in-beam gamma ray and conversion electron spectroscopy following
the reactions 196Pt (d, 2n) and 196Pt (p, n) at the cyclotrons of the PSI and Bonn [14]. These
studies have achieved an improved classification of states in 195Pt and 196Au which give further
support to the original ideas [10, 15, 11] and extend and refine previous experimental work
[16–18] in this research area.

As we mentioned before, the Pt and Au nuclei have been described in terms of a dynamical
U(6/12)ν ⊗ U(6/4)π supersymmetry. In this case, the relevant subgroup chain is given by
[11]

U(6/12)ν ⊗ U(6/4)π ⊃ UBν (6) ⊗ UFν (12) ⊗ UBπ (6) ⊗ UFπ (4)

⊃ UB(6) ⊗ UFν (6) ⊗ UFν (2) ⊗ UFπ (4)

⊃ UBFν (6) ⊗ UFν (2) ⊗ UFπ (4)

⊃ SOBFν (6) ⊗ UFν (2) ⊗ SUFπ (4)

⊃ Spin(6) ⊗ UFν (2)

⊃ Spin(5) ⊗ UFν (2)

⊃ Spin(3) ⊗ SUFν (2)

⊃ SU(2). (11)

The Hamiltonian is expressed in terms of the Casimir operators as

H = αC2UBFν (6) + βC2SOBFν (6) + γC2 Spin(6) + δC2 Spin(5) + εC2 Spin(3) + ηC2SU(2). (12)

The corresponding eigenvalues describe simultaneously the excitation spectra of the quartet
of nuclei in figure 1

E = α[N1(N1 + 5) + N2(N2 + 3) + N3(N3 + 1)] + β
[
	1(	1 + 4) + 	2(	2 + 2) + 	2

3

]
+ γ

[
σ1(σ1 + 4) + σ2(σ2 + 2) + σ 2

3

]
+ δ[τ1(τ1 + 3) + τ2(τ2 + 1)]

+ εJ (J + 1) + ηL(L + 1). (13)

The coefficients α, β, γ, δ, ε and η have been determined in a simultaneous fit of the excitation
energies of the four nuclei of figure 1 [14].

In a dynamical supersymmetry, closed expressions can be derived for energies, and
selection rules and intensities for electromagnetic transitions and single-particle transfer
reactions. While a simultaneous description and classification of these observables in
terms of the U(6/12)ν ⊗ U(6/4)π supersymmetry has been shown to be fulfilled to a good
approximation for the quartet of nuclei 194Pt, 195Au, 195Pt and 196Au, there are important
predictions still not fully verified by experiments. These tests involve the transfer reaction
intensities among the supersymmetric partners. In the next section we concentrate on the latter
and, in particular, on the one-proton transfer reactions 194Pt → 195Au and 195Pt → 196Au.

4. One-proton transfer reactions

The single-particle transfer operator that is commonly used in the IBFM has been derived
in the seniority scheme [19]. Although strictly speaking this derivation is only valid in the
vibrational regime, it has been used for deformed nuclei as well. An alternative method is based
on symmetry considerations. It consists in expressing the single-particle transfer operator in
terms of tensor operators under the subgroups that appear in the group chain of a dynamical
(super)symmetry [20–22]. The use of tensor operators to describe single-particle transfer
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Table 1. Intensities of one-proton transfer reactions for the transfer operator of equation (14). For
the supersymmetric quartet of nuclei 194,195Pt–195,196Au the boson numbers are Nν = 4, Nπ = 1
and N = Nν + Nπ = 5, see figure 1.

194Pt → 195Au |〈f ‖P †‖ i〉|2〈(
N + 3

2 , 1
2 , 1

2

)
,
( 1

2 , 1
2

)
, 3

2

∣∣ [α0(N + 5)
√

5 − α2(N + 1)]2 Nπ +1
5(N+3)2〈(

N + 1
2 , 1

2 , − 1
2

)
,
( 1

2 , 1
2

)
, 3

2

∣∣ [α0
√

5 + α2]2 (N+1)(N+5)(Nπ +1)

5(N+3)2

195Pt → 196Au |〈f ‖P †‖ i〉|2〈(
N + 3

2 , 1
2 , 1

2

)
,
( 1

2 , 1
2

)
, 3

2 , L
∣∣ [α0(N + 5)

√
5 − α2(N + 1)]2 Nπ +1

5(N+3)2
2L+1

4〈(
N + 1

2 , 1
2 , − 1

2

)
,
( 1

2 , 1
2

)
, 3

2 , L
∣∣ [α0

√
5 + α2]2 (N+1)(N+5)(Nπ +1)

5(N+3)2
2L+1

4

reactions in the supersymmetry scheme has the advantage of giving rise to selection rules and
closed expressions for the spectroscopic factors, whose consequences for the experimental
observables can be better gauged. The single-particle transfer between different members of
the same supermultiplet provides an important test of supersymmetries, since it involves the
transformation of a boson into a fermion or vice versa, but conserving the total number of
bosons plus fermions.

The one-proton transfer operator in the U(6/12)ν ⊗ U(6/4)π supersymmetry consists, in
lowest order, of two terms

P † = α0
(
s̃π × a

†
π,3/2

)(3/2)
+ α2

(
d̃π × a

†
π,3/2

)(3/2)
(14)

that describe the one-proton transfer reactions between the Pt and Au nuclei belonging to
the quartet of nuclei of equation (1): 194Pt → 195Au and 195Pt → 196Au. In table 1
we present the intensities of the allowed one-proton transfer reactions from the ground
state |(N + 2, 0, 0), (0, 0), 0〉 of the even–even nucleus 194Pt to the even–odd nucleus 195Au
belonging to the same supermultiplet [Nν} ⊗ [Nπ } = [Nν + 1} ⊗ [Nπ + 1}. The intensity is
defined as

I = |〈f ‖P †‖ i〉|2. (15)

The transfer operator of equation (14) is a tensor operator under Spin(5) and Spin(3). Its
transformation properties are (τ1, τ2) = (1/2, 1/2) under Spin(5) and J = 3/2 under
Spin(3). Due to the selection rules, P † can only excite states in the final nucleus with
(τ1, τ2) = (1/2, 1/2) and J = 3/2. The allowed values of the Spin(6) labels are
(σ1, σ2, σ3) = (N + 3/2, 1/2, 1/2) for the ground state and (N + 1/2, 1/2,−1/2) for an
excited state. The ratio of the intensities for the excitation of the excited and the ground state
is given by

R = Igs→exc

Igs→gs
= (N + 1)(N + 5)

[
α0

√
5 + α2

α0(N + 5)
√

5 − α2(N + 1)

]2

. (16)

The number of bosons N is taken to be the number of bosons in the odd–odd nucleus 196Au:
N = Nν + Nπ = 4 + 1 = 5, see figure 1. In the bottom half of table 1, we show the allowed
transitions for the one-proton transfer from the ground state |(N + 2, 0, 0), (0, 0), 0, 1/2〉 of
the odd–even nucleus 195Pt to the odd–odd nucleus 196Au. In this case, the transfer operator
of equation (14) excites doublets of 196Au characterized by (τ1, τ2) = (1/2, 1/2), J = 3/2
and L = J ± 1/2, belonging to the ground band with (σ1, σ2, σ3) = (N + 3/2, 1/2, 1/2), and
to an excited band with (N + 1/2, 1/2,−1/2). The ratio of the intensities is the same as that
for the 194Pt → 195Au transfer reaction in equation (16),

R(195Pt → 196Au) = R(194Pt → 195Au). (17)
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Figure 2. Allowed one-proton transfer reactions for 194Pt → 195Au. The spectroscopic factors
are normalized to 100 for the ground state to ground state transition for the operators P1/P2.

Table 2. As table 1, but for the transfer operators of equation (18).

194Pt → 195Au |〈f ‖P †
1 ‖ i〉|2 |〈f ‖P †

2 ‖ i〉|2〈(
N + 3

2 , 1
2 , 1

2

)
,
( 1

2 , 1
2

)
, 3

2

∣∣ 2(Nπ +1)
3 α2 8(N+6)2(Nπ +1)

15(N+3)2 α2〈(
N + 1

2 , 1
2 , − 1

2

)
,
( 1

2 , 1
2

)
, 3

2

∣∣ 0 6(N+1)(N+5)(Nπ +1)

5(N+3)2 α2

195Pt → 196Au |〈f ‖P †
1 ‖ i〉|2 |〈f ‖P †

2 ‖ i〉|2
〈(
N + 3

2 , 1
2 , 1

2

)
,
( 1

2 , 1
2

)
, 3

2 , L
∣∣ 2(Nπ +1)

3
2L+1

4 α2 8(N+6)2(Nπ +1)

15(N+3)2
2L+1

4 α2〈(
N + 1

2 , 1
2 , − 1

2

)
,
( 1

2 , 1
2

)
, 3

2 , L
∣∣ 0 6(N+1)(N+5)(Nπ +1)

5(N+3)2
2L+1

4 α2

This is a direct consequence of the supersymmetry classification of the states.
For special choices of α0 and α2, the transfer operator of equation (14) becomes a tensor

operator under Spin(6) as well,

P
†
1 = α

[
−

√
1
6

(
s̃π × a

†
π,3/2

)(3/2)
+

√
5
6

(
d̃π × a

†
π,3/2

)(3/2)

]

P
†
2 = α

[
+
√

5
6

(
s̃π × a

†
π,3/2

)(3/2)
+

√
1
6

(
d̃π × a

†
π,3/2

)(3/2)

]
.

(18)

Here P
†
1 transforms as (σ1, σ2, σ3) = (1/2, 1/2,−1/2) under Spin(6), and P

†
2 as

(3/2, 1/2, 1/2). Due to the Spin(6) selection rules, the operator P
†
1 only excites the ground

state of the Au nuclei with (σ1, σ2, σ3) = (N + 3/2, 1/2, 1/2), whereas P
†
2 populates, in

addition to the ground state, also an excited state with (N + 1/2, 1/2,−1/2). In table 2,
we present the intensities of the allowed transfers for the operators of equation (18).
These correspond to special cases of the more general results of table 1. Figures 2 and
3 show the allowed transitions for the one-proton transfer reaction 194Pt → 195Au and
195Pt → 196Au, respectively. The ratio of the intensities is now given by

R1(
195Pt → 196Au) = R1(

194Pt → 195Au) = 0

R2(
195Pt → 196Au) = R2(

194Pt → 195Au) = 9(N + 1)(N + 5)

4(N + 6)2

(19)

for P1 and P2, respectively. For the one-proton transfer reactions 194Pt → 195Au and 195Pt
→ 196Au, the second ratio is given by R2 = 1.12 (N = 5).

The available experimental data from the proton stripping reactions 194Pt (α, t)195Au and
194Pt (3He, d)195Au [23] show that the J = 3/2 ground state of 195Au is excited strongly with
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Figure 3. As figure 2, but for 195Pt → 196Au.

C2S = 0.175, whereas the first excited J = 3/2 state is excited weakly with C2S = 0.019.
In the SUSY scheme, the latter state is assigned as a member of the ground-state band with
(τ1, τ2) = (5/2, 1/2). Therefore the one proton transfer to this state is forbidden by the
Spin(5) selection rule of the tensor operators of equation (18). The relatively small strength to
excited J = 3/2 states suggests that the operator P1 of equation (18) can be used to describe
the data with a good degree of approximation.

According to equations (17) and (19), the ratio of the intensities for the 195Pt → 196Au
transfer reaction is the same as that for 194Pt → 195Au. The equality of the ratios is a
consequence of the supersymmetry classification. This prediction will be tested experimentally
using the (3He, d) reaction on 194Pt and 195Pt targets [24].

5. Correlations

As we have seen in the previous section, the matrix elements for one-proton transfer reactions
between odd-neutron and odd–odd nuclei are related to those between even–even and odd-
proton nuclei. The results were obtained by deriving the matrix elements and taking the ratios.
However, it is possible to generalize these results and to establish explicit relations between
the intensities of these two transfer reactions, i.e. the one-proton transfer reaction intensities
between the (ground state of the) Pt and Au nuclei are related by

I (195Pt → 196Au) = 2L + 1

4
I (194Pt → 195Au). (20)

This correlation holds for both the general form of the transfer operator of equation (14) and
the two tensor operators of equation (18). It can be derived from the symmetry relations that
exist between the different U(6) couplings in the wavefunctions of the even–even, odd–even,
even–odd and odd–odd nuclei of a supersymmetric quartet (the so-called F-spin properties
[4]). As a consequence, it is sufficient to derive the intensities for one of the reactions only.
The intensities for the other reaction can then be obtained immediately from the correlation in
equation (20).

For the one-neutron transfer reactions, 194Pt ↔ 195Pt and 195Au ↔ 196Au, there exists a
similar situation. We have found some preliminary results for correlations among different
reactions which are similar, but not identical, to those obtained for one-proton transfer in
equation (20).

There are still two other possible tests that probe directly the structure of the wavefunctions
of a supermultiplet of nuclei. (i) The two-nucleon transfer reaction 194Pt (α, d)196Au that has
been measured recently [24], in which a neutron–proton pair is transferred to the target
nucleus. This reaction presents a very sensitive test of the wavefunctions, since it is not only
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a measure for the transfer intensity, but it also probes the correlation within the transferred
neutron–proton pair. (ii) The charge-exchange reaction 195Au → 195Pt (also connected to the
β decay which has been studied in the IBFM in [25]). Theoretically, both processes involve
a combination of the operator for one-proton and for one-neutron transfer reactions inside the
same supermultiplet.

In principle, the available experimental data from the proton stripping reactions
194Pt(α, t)195Au and 194Pt(3He, d)195Au [23] and from the neutron stripping reaction
194Pt(d, p)195Pt [26] can be used to determine the appropriate form of the one-proton and
one-neutron transfer operators [21], which can then be used to predict the spectroscopic
factors for the other one-nucleon transfer reactions between nuclei belonging to the quartet of
figure 1, e.g. 195Au → 196Au and 195Pt → 196Au, as well as for the two-nucleon transfer
reaction 194Pt(α, d)196Au and the log ft values of the β decay 195Au → 195Pt [27].

6. Summary, conclusions and outlook

The recent measurements of the spectroscopic properties of the odd–odd nucleus 196Au have
rekindled interest in nuclear supersymmetry. The available data on the spectroscopy of the
quartet of nuclei 194Pt, 195Au, 195Pt and 196Au can, to a good approximation, be described in
terms of the U(6/4)π ⊗ U(6/12)ν supersymmetry. However, there is a still an important set
of experiments which can further test the predictions of the supersymmetry scheme: transfer
reactions between nuclei belonging to the same supermultiplet, in particular between the odd–
even (and even–odd) and odd–odd members of the supersymmetric quartet. Theoretically,
these transfers are described by the supersymmetric generators which change a boson into a
fermion, or vice versa. Most available data involve transfer reactions between nuclei belonging
to different multiplets.

In this paper, we investigated one-proton transfer reactions between the SUSY
partners: 194Pt → 195Au and 195Pt → 196Au. The supersymmetry implies an explicit
correlation between the spectroscopic factors of these two reactions which can be tested
experimentally. Preliminary results suggest that for the one-neutron transfer reactions
194Pt ↔ 195Pt and 195Au ↔ 196Au there exist correlations similar to those obtained for
the one-proton transfer in equation (20). To the best of our knowledge, this is the first time
that such relations have been predicted for nuclear reactions among different pairs of nuclei,
which may provide a challenge and motivation for future experiments.

An extension of these ideas can be applied to the two-nucleon transfer reaction 194Pt
(α, d)196Au and the charge-exchange reaction (or β decay) 195Au → 195Pt. Even though they
may represent different physical processes, i.e. one- and two-nucleon transfer reactions and β

decay, the nuclear structure contributions are related by supersymmetry. Whether it is possible
to find a simultaneous description in which all of these processes are correlated by SUSY is
an open question [27].

In this paper, we have discussed n-SUSY in combination with dynamical symmetries.
However, dynamical symmetries are very scarce and have severely limited the study of nuclear
supersymmetry. An example of n-SUSY without dynamical symmetry is a study of the Ru
and Rh isotopes in the U(6/12) supersymmetry, in which a combination of the UBF (5) and
SOBF (6) dynamical symmetries was shown to give an excellent description of the data [3].
This opens up the possibility of generalizing n-SUSY to transitional regions of the nuclear
mass table, to find other examples of supersymmetric quartets of nuclei, and to further extend
the search for correlations as a result of SUSY. Of course, it remains to be seen whether
the correlations predicted by n-SUSY are verified by future experiments and whether these
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correlations can be truly extended to other regions of the nuclear table. If this is indeed the
case, nuclear supersymmetry may yet provide a powerful unifying scheme for atomic nuclei.
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